Unsupervised Scene Adaptation with Memory Regularization in vivo

Author:

Zheng Zhedong12,Yang Yi1

Affiliation:

1. University of Technology Sydney

2. Baidu Research

Abstract

This work focuses on the unsupervised scene adaptation problem of learning from both labeled source data and unlabeled target data. Existing approaches focus on minoring the inter-domain gap between the source and target domains. However, the intra-domain knowledge and inherent uncertainty learned by the network are under-explored. In this paper, we propose an orthogonal method, called memory regularization in vivo, to exploit the intra-domain knowledge and regularize the model training. Specifically, we refer to the segmentation model itself as the memory module, and minor the discrepancy of the two classifiers, i.e., the primary classifier and the auxiliary classifier, to reduce the prediction inconsistency. Without extra parameters, the proposed method is complementary to most existing domain adaptation methods and could generally improve the performance of existing methods. Albeit simple, we verify the effectiveness of memory regularization on two synthetic-to-real benchmarks: GTA5 → Cityscapes and SYNTHIA → Cityscapes, yielding +11.1% and +11.3% mIoU improvement over the baseline model, respectively. Besides, a similar +12.0% mIoU improvement is observed on the cross-city benchmark: Cityscapes → Oxford RobotCar.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Night-to-Day Image Translation with Semantic Prior and Reference Image Guidance;Lecture Notes in Computer Science;2023-11-07

2. Adaptive Mutual Learning for Unsupervised Domain Adaptation;IEEE Transactions on Circuits and Systems for Video Technology;2023-11

3. Style-Hallucinated Dual Consistency Learning: A Unified Framework for Visual Domain Generalization;International Journal of Computer Vision;2023-10-18

4. Biased Class disagreement: detection of out of distribution instances by using differently biased semantic segmentation models;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

5. SegDA: Maximum Separable Segment Mask with Pseudo Labels for Domain Adaptive Semantic Segmentation;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3