Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Network Approach

Author:

Hamaguchi Takuo1,Oiwa Hidekazu2,Shimbo Masashi1,Matsumoto Yuji1

Affiliation:

1. NARA Institute of Science and Technology

2. Recruit Institute of Technology

Abstract

Knowledge base completion (KBC) aims to predict missing information in a knowledge base. In this paper, we address the out-of-knowledge-base (OOKB) entity problem in KBC: how to answer queries concerning test entities not observed at training time. Existing embedding-based KBC models assume that all test entities are available at training time, making it unclear how to obtain embeddings for new entities without costly retraining. To solve the OOKB entity problem without retraining, we use graph neural networks (Graph-NNs) to compute the embeddings of OOKB entities, exploiting the limited auxiliary knowledge provided at test time. The experimental results show the effectiveness of our proposed model in the OOKB setting. Additionally, in the standard KBC setting in which OOKB entities are not involved, our model achieves state-of-the-art performance on the WordNet dataset.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fully-inductive link prediction with path-based graph neural network: A comparative analysis;Neurocomputing;2024-12

2. Inductive Relation Prediction by Disentangled Subgraph Structure;Tsinghua Science and Technology;2024-10

3. Integrating global semantics and enhanced local subgraph for inductive link prediction;International Journal of Machine Learning and Cybernetics;2024-09-06

4. Towards semantically enriched embeddings for knowledge graph completion;Neurosymbolic Artificial Intelligence;2024-08-21

5. RHGNN: imposing relational inductive bias for heterogeneous graph neural network;International Journal of Machine Learning and Cybernetics;2024-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3