Affiliation:
1. Department of Computer Science and Engineering, University of Minnesota
Abstract
Image captioning models depend on training with paired image-text corpora, which poses various challenges in describing images containing novel objects absent from the training data. While previous novel object captioning methods rely on external image taggers or object detectors to describe novel objects, we present the Attention-based Novel Object Captioner (ANOC) that complements novel object captioners with human attention features that characterize generally important information independent of tasks. It introduces a gating mechanism that adaptively incorporates human attention with self-learned machine attention, with a Constrained Self-Critical Sequence Training method to address the exposure bias while maintaining constraints of novel object descriptions. Extensive experiments conducted on the nocaps and Held-Out COCO datasets demonstrate that our method considerably outperforms the state-of-the-art novel object captioners.
Our source code is available at https://github.com/chenxy99/ANOC.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献