Affiliation:
1. Philipps-Universität Marburg
Abstract
We study the problem of learning the structure of an optimal Bayesian network when additional structural constraints are posed on the network or on its moralized graph. More precisely, we consider the constraint that the moralized graph can be transformed to a graph from a sparse graph class Π by at most k vertex deletions. We show that for Π being the graphs with maximum degree 1, an optimal network can be computed in polynomial time when k is constant, extending previous work that gave an algorithm with such a running time for Π being the class of edgeless graphs [Korhonen & Parviainen, NIPS 2015]. We then show that further extensions or improvements are presumably impossible. For example, we show that when Π is the set of graphs in which each component has size at most three, then learning an optimal network is NP-hard even if k=0. Finally, we show that learning an optimal network with at most k edges in the moralized graph presumably is not fixed-parameter tractable with respect to k and that, in contrast, computing an optimal network with at most k arcs can be computed is fixed-parameter tractable in k.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献