Conditional GAN with Discriminative Filter Generation for Text-to-Video Synthesis

Author:

Balaji Yogesh1,Min Martin Renqiang2,Bai Bing2,Chellappa Rama1,Graf Hans Peter2

Affiliation:

1. University of Maryland, College Park

2. NEC Labs America - Princeton

Abstract

Developing conditional generative models for text-to-video synthesis is an extremely challenging yet an important topic of research in machine learning. In this work, we address this problem by introducing Text-Filter conditioning Generative Adversarial Network (TFGAN), a conditional GAN model with a novel multi-scale text-conditioning scheme that improves text-video associations. By combining the proposed conditioning scheme with a deep GAN architecture, TFGAN generates high quality videos from text on challenging real-world video datasets. In addition, we construct a synthetic dataset of text-conditioned moving shapes to systematically evaluate our conditioning scheme. Extensive experiments demonstrate that TFGAN significantly outperforms existing approaches, and can also generate videos of novel categories not seen during training.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovative Workflow for AI-Generated Video: Addressing Limitations, Impact and Implications;2024 IEEE Symposium on Industrial Electronics & Applications (ISIEA);2024-07-06

2. An Overview of Text to Visual Generation Using GAN;Indian Journal of Image Processing and Recognition;2024-04-30

3. Sign Language Production with Latent Motion Transformer;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

4. Sounding Video Generator: A Unified Framework for Text-Guided Sounding Video Generation;IEEE Transactions on Multimedia;2024

5. A Benchmark for Controllable Text -Image-to-Video Generation;IEEE Transactions on Multimedia;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3