Beyond Product Quantization: Deep Progressive Quantization for Image Retrieval

Author:

Gao Lianli1,Zhu Xiaosu1,Song Jingkuan1,Zhao Zhou2,Shen Heng Tao1

Affiliation:

1. Center for Future Media, University of Electronic Science and Technology of China

2. Zhejiang University

Abstract

Product Quantization (PQ) has long been a mainstream for generating an exponentially large codebook at very low memory/time cost. Despite its success, PQ is still tricky for the decomposition of high-dimensional vector space, and the retraining of model is usually unavoidable when the code length changes. In this work, we propose a deep progressive quantization (DPQ) model, as an alternative to PQ, for large scale image retrieval. DPQ learns the quantization codes sequentially and approximates the original feature space progressively. Therefore, we can train the quantization codes with different code lengths simultaneously. Specifically, we first utilize the label information for guiding the learning of visual features, and then apply several quantization blocks to progressively approach the visual features. Each quantization block is designed to be a layer of a convolutional neural network, and the whole framework can be trained in an end-to-end manner. Experimental results on the benchmark datasets show that our model significantly outperforms the state-of-the-art for image retrieval. Our model is trained once for different code lengths and therefore requires less computation time. Additional ablation study demonstrates the effect of each component of our proposed model. Our code is released at https://github.com/cfm-uestc/DPQ.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LightLT: A Lightweight Representation Quantization Framework for Long-Tail Data;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Towards Codebook-Free Deep Probabilistic Quantization for Image Retrieval;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-01

3. Entropy-Optimized Deep Weighted Product Quantization for Image Retrieval;IEEE Transactions on Image Processing;2024

4. Deep Progressive Asymmetric Quantization Based on Causal Intervention for Fine-Grained Image Retrieval;IEEE Transactions on Multimedia;2024

5. Deep Collaborative Graph Hashing;Binary Representation Learning on Visual Images;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3