POPPONENT: Highly accurate, individually and socially efficient opponent preference model in bilateral multi issue negotiations (Extended Abstract)

Author:

Zafari Farhad1,Nassiri-Mofakham Faria2

Affiliation:

1. Swinburne University of Technology

2. University of Isfahan

Abstract

In automated bilateral multi issue negotiations, two intelligent automated agents negotiate on behalf of their owners over many issues in order to reach an agreement. Modeling the opponent can excessively boost the performance of the agents and increase the quality of the negotiation outcome. State of the art models accomplish this by considering some assumptions about the opponent which restricts their applicability in real scenarios. In this paper, a less restricted technique where perceptron units (POPPONENT) are applied in modelling the preferences of the opponent is proposed. This model adopts a Multi Bipartite version of the Standard Gradient Descent search algorithm (MBGD) to find the best hypothesis, which is the best preference profile. In order to evaluate the accuracy and performance of this proposed opponent model, it is compared with the state of the art models available in the Genius repository. This results in the devised setting which approves the higher accuracy of POPPONENT compared to the most accurate state of the art model. Evaluating the model in the real world negotiation scenarios in the Genius framework also confirms its high accuracy in relation to the state of the art models in estimating the utility of offers. The findings here indicate that the proposed model is individually and socially efficient. This proposed MBGD method could also be adopted in similar practical areas of Artificial Intelligence.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. User Preferences Elicitation in Bilateral Automated Negotiation Using Recursive Least Square Estimation;2021 12th International Conference on Information and Knowledge Technology (IKT);2021-12-14

2. Arguing and negotiating using incomplete negotiators profiles;Autonomous Agents and Multi-Agent Systems;2021-04-19

3. Meta-Strategy Based on Multi-Armed Bandit Approach for Multi-Time Negotiation;IEICE Transactions on Information and Systems;2020-12-01

4. ANAC 2018: Repeated Multilateral Negotiation League;Advances in Intelligent Systems and Computing;2020

5. Prediction of Nash Bargaining Solution in Negotiation Dialogue;Lecture Notes in Computer Science;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3