Aspect Term Extraction with History Attention and Selective Transformation

Author:

Li Xin1,Bing Lidong2,Li Piji1,Lam Wai1,Yang Zhimou3

Affiliation:

1. Key Laboratory of High Confidence Software Technologies, Ministry of Education (CUHK Sub-Lab), Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong

2. Tencent AI Lab, Shenzhen, China

3. College of Information Science and Engineering, Northeastern University, China

Abstract

Aspect Term Extraction (ATE), a key sub-task in Aspect-Based Sentiment Analysis, aims to extract explicit aspect expressions from online user reviews. We present a new framework for tackling ATE. It can exploit two useful clues, namely opinion summary and aspect detection history. Opinion summary is distilled from the whole input sentence, conditioned on each current token for aspect prediction, and thus the tailor-made summary can help aspect prediction on this token. On the other hand, the aspect detection history information is distilled from the previous aspect predictions, and it can leverage the coordinate structure and tagging schema constraints to upgrade the aspect prediction. Experimental results over four benchmark datasets clearly demonstrate that our framework can outperform all state-of-the-art methods. 

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aspect-based sentiment analysis: approaches, applications, challenges and trends;Knowledge and Information Systems;2024-08-14

2. LADy : A Benchmark Toolkit for Latent Aspect Detection Enriched with Backtranslation Augmentation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

3. Enhanced Packed Marker with Entity Information for Aspect Sentiment Triplet Extraction;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

4. Unifying aspect-based sentiment analysis BERT and multi-layered graph convolutional networks for comprehensive sentiment dissection;Scientific Reports;2024-06-25

5. Span-Pair Interaction and Tagging for Dialogue-Level Aspect-Based Sentiment Quadruple Analysis;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3