Affiliation:
1. Beijing Institute of Technology
2. CETC Big Data Research Institute Co., Ltd.
3. Zhijiang Lab
4. Huazhong University of Science and Technology
Abstract
Most of the unsupervised hashing methods usually map images into semantic similarity-preserving hash codes by constructing local semantic similarity structure as guiding information, i.e., treating each point similar to its k nearest neighbours. However, for an image, some of its k nearest neighbours may be dissimilar to it, i.e., they are noisy datapoints which will damage the retrieval performance. Thus, to tackle this problem, in this paper, we propose a novel deep unsupervised hashing method, called MLS3RDUH, which can reduce the noisy datapoints to further enhance retrieval performance. Specifically, the proposed method first defines a novel similarity matrix by utilising the intrinsic manifold structure in feature space and the cosine similarity of datapoints to reconstruct the local semantic similarity structure. Then a novel log-cosh hashing loss function is used to optimize the hashing network to generate compact hash codes by incorporating the defined similarity as guiding information. Extensive experiments on three public datasets show that the proposed method outperforms the state-of-the-art baselines.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献