Stochastic Population Update Can Provably Be Helpful in Multi-Objective Evolutionary Algorithms

Author:

Bian Chao1,Zhou Yawen1,Li Miqing2,Qian Chao1

Affiliation:

1. Nanjing University

2. University of Birmingham

Abstract

Evolutionary algorithms (EAs) have been widely and successfully applied to solve multi-objective optimization problems, due to their nature of population-based search. Population update is a key component in multi-objective EAs (MOEAs), and it is performed in a greedy, deterministic manner. That is, the next-generation population is formed by selecting the first population-size ranked solutions (based on some selection criteria, e.g., non-dominated sorting, crowdedness and indicators) from the collections of the current population and newly-generated solutions. In this paper, we question this practice. We analytically present that introducing randomness into the population update procedure in MOEAs can be beneficial for the search. More specifically, we prove that the expected running time of a well-established MOEA (SMS-EMOA) for solving a commonly studied bi-objective problem, OneJumpZeroJump, can be exponentially decreased if replacing its deterministic population update mechanism by a stochastic one. Empirical studies also verify the effectiveness of the proposed stochastic population update method. This work is an attempt to challenge a common practice for the population update in MOEAs. Its positive results, which might hold more generally, should encourage the exploration of developing new MOEAs in the area.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving decomposition-based MOEAs for combinatorial optimisation by intensifying corner weights;Swarm and Evolutionary Computation;2024-12

2. Hot off the Press: Runtime Analysis of the SMS-EMOA for Many-Objective Optimization;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

3. Illustrating the Efficiency of Popular Evolutionary Multi-Objective Algorithms Using Runtime Analysis;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

4. A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

5. An Elite Archive-Assisted Multi-Objective Evolutionary Algorithm for mRNA Design;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3