Enabling Retrain-free Deep Neural Network Pruning Using Surrogate Lagrangian Relaxation

Author:

Gurevin Deniz1,Bragin Mikhail1,Ding Caiwen1,Zhou Shanglin1,Pepin Lynn1,Li Bingbing1,Miao Fei1

Affiliation:

1. University of Connecticut

Abstract

Network pruning is a widely used technique to reduce computation cost and model size for deep neural networks. However, the typical three-stage pipeline, i.e., training, pruning and retraining (fine-tuning) significantly increases the overall training trails. In this paper, we develop a systematic weight-pruning optimization approach based on Surrogate Lagrangian relaxation (SLR), which is tailored to overcome difficulties caused by the discrete nature of the weight-pruning problem while ensuring fast convergence. We further accelerate the convergence of the SLR by using quadratic penalties. Model parameters obtained by SLR during the training phase are much closer to their optimal values as compared to those obtained by other state-of-the-art methods. We evaluate the proposed method on image classification tasks using CIFAR-10 and ImageNet, as well as object detection tasks using COCO 2014 and Ultra-Fast-Lane-Detection using TuSimple lane detection dataset. Experimental results demonstrate that our SLR-based weight-pruning optimization approach achieves higher compression rate than state-of-the-arts under the same accuracy requirement. It also achieves a high model accuracy even at the hard-pruning stage without retraining (reduces the traditional three-stage pruning to two-stage). Given a limited budget of retraining epochs, our approach quickly recovers the model accuracy.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparsifying Graph Neural Networks with Compressive Sensing;Proceedings of the Great Lakes Symposium on VLSI 2024;2024-06-12

2. PruneGNN: Algorithm-Architecture Pruning Framework for Graph Neural Network Acceleration;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

3. Physics-aware Roughness Optimization for Diffractive Optical Neural Networks;2023 60th ACM/IEEE Design Automation Conference (DAC);2023-07-09

4. Acceleration-aware, Retraining-free Evolutionary Pruning for Automated Fitment of Deep Learning Models on Edge Devices;Proceedings of the Second International Conference on AI-ML Systems;2022-10-12

5. Towards Sparsification of Graph Neural Networks;2022 IEEE 40th International Conference on Computer Design (ICCD);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3