Exploration via Joint Policy Diversity for Sparse-Reward Multi-Agent Tasks

Author:

Xu Pei12,Zhang Junge2,Huang Kaiqi123

Affiliation:

1. School of Artificial Intelligence, University of Chinese Academy of Sciences

2. CRISE, Institute of Automation, Chinese Academy of Sciences

3. CAS, Center for Excellence in Brain Science and Intelligence Technology

Abstract

Exploration under sparse rewards is a key challenge for multi-agent reinforcement learning problems. Previous works argue that complex dynamics between agents and the huge exploration space in MARL scenarios amplify the vulnerability of classical count-based exploration methods when combined with agents parameterized by neural networks, resulting in inefficient exploration. In this paper, we show that introducing constrained joint policy diversity into a classical count-based method can significantly improve exploration when agents are parameterized by neural networks. Specifically, we propose a joint policy diversity to measure the difference between current joint policy and previous joint policies, and then use a filtering-based exploration constraint to further refine the joint policy diversity. Under the sparse-reward setting, we show that the proposed method significantly outperforms the state-of-the-art methods in the multiple-particle environment, the Google Research Football, and StarCraft II micromanagement tasks. To the best of our knowledge, on the hard 3s_vs_5z task which needs non-trivial strategies to defeat enemies, our method is the first to learn winning strategies without domain knowledge under the sparse-reward setting.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Task-Wise Prompt Query Function for Rehearsal-Free Continual Learning;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3