Deep Neural Networks for High Dimension, Low Sample Size Data

Author:

Liu Bo1,Wei Ying1,Zhang Yu1,Yang Qiang1

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong

Abstract

Deep neural networks (DNN) have achieved breakthroughs in applications with large sample size. However, when facing high dimension, low sample size (HDLSS) data, such as the phenotype prediction problem using genetic data in bioinformatics, DNN suffers from overfitting and high-variance gradients. In this paper, we propose a DNN model tailored for the HDLSS data, named Deep Neural Pursuit (DNP). DNP selects a subset of high dimensional features for the alleviation of overfitting and takes the average over multiple dropouts to calculate gradients with low variance. As the first DNN method applied on the HDLSS data, DNP enjoys the advantages of the high nonlinearity, the robustness to high dimensionality, the capability of learning from a small number of samples, the stability in feature selection, and the end-to-end training. We demonstrate these advantages of DNP via empirical results on both synthetic and real-world biological datasets.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3