Inter-node Hellinger Distance based Decision Tree

Author:

Akash Pritom Saha1,Kadir Md. Eusha1,Ali Amin Ahsan2,Shoyaib Mohammad1

Affiliation:

1. Institute of Information Technology, University of Dhaka, Bangladesh

2. Department of Computer Science & Engineering, Independent University, Bangladesh

Abstract

This paper introduces a new splitting criterion called Inter-node Hellinger Distance (iHD) and a weighted version of it (iHDw) for constructing decision trees. iHD measures the distance between the parent and each of the child nodes in a split using Hellinger distance. We prove that this ensures the mutual exclusiveness between the child nodes. The weight term in iHDw is concerned with the purity of individual child node considering the class imbalance problem. The combination of the distance and weight term in iHDw thus favors a partition where child nodes are purer and mutually exclusive, and skew insensitive. We perform an experiment over twenty balanced and twenty imbalanced datasets. The results show that decision trees based on iHD win against six other state-of-the-art methods on at least 14 balanced and 10 imbalanced datasets. We also observe that adding the weight to iHD improves the performance of decision trees on imbalanced datasets. Moreover, according to the result of the Friedman test, this improvement is statistically significant compared to other methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hellinger distance decision trees for PU learning in imbalanced data sets;Machine Learning;2023-03-28

2. Software Defect Prediction Through a Hybrid Approach Comprising of a Statistical Tool and a Machine Learning Model;Applications of Operational Research in Business and Industries;2023

3. On Supervised Class-Imbalanced Learning: An Updated Perspective and Some Key Challenges;IEEE Transactions on Artificial Intelligence;2022-12

4. A Novel Splitting Criterion Inspired by Geometric Mean Metric Learning for Decision Tree;2022 26th International Conference on Pattern Recognition (ICPR);2022-08-21

5. Tree-based heterogeneous cascade ensemble model for credit scoring;International Journal of Forecasting;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3