Affiliation:
1. University of Chinese Academy of Sciences
2. Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences
Abstract
Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the “graph pooling” mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be captured. The proposed H-GCN model shows strong empirical performance on various public benchmark graph datasets, outperforming state-of-the-art methods and acquiring up to 5.9% performance improvement in terms of accuracy. In addition, when only a few labeled samples are provided, our model gains substantial improvements.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献