Event-based Action Recognition Using Motion Information and Spiking Neural Networks

Author:

Liu Qianhui12,Xing Dong12,Tang Huajin12,Ma De1,Pan Gang12

Affiliation:

1. College of Computer Science and Technology, Zhejiang University, Hangzhou, China

2. Zhejiang Lab, Hangzhou, China

Abstract

Event-based cameras have attracted increasing attention due to their advantages of biologically inspired paradigm and low power consumption. Since event-based cameras record the visual input as asynchronous discrete events, they are inherently suitable to cooperate with the spiking neural network (SNN). Existing works of SNNs for processing events mainly focus on the task of object recognition. However, events from the event-based camera are triggered by dynamic changes, which makes it an ideal choice to capture actions in the visual scene. Inspired by the dorsal stream in visual cortex, we propose a hierarchical SNN architecture for event-based action recognition using motion information. Motion features are extracted and utilized from events to local and finally to global perception for action recognition. To the best of the authors’ knowledge, it is the first attempt of SNN to apply motion information to event-based action recognition. We evaluate our proposed SNN on three event-based action recognition datasets, including our newly published DailyAction-DVS dataset comprising 12 actions collected under diverse recording conditions. Extensive experimental results show the effectiveness of motion information and our proposed SNN architecture for event-based action recognition.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hypergraph-Based Multi-View Action Recognition Using Event Cameras;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-10

2. Multi-scale Harmonic Mean Time Surfaces for Event-based Object Classification;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. A Time-Surface Enhancement Model for Event-based Spatiotemporal Feature Extraction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Event Camera-Based Real-Time Gesture Recognition for Improved Robotic Guidance;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

5. An Event-based Feature Representation Method for Event Stream Classification using Deep Spiking Neural Networks;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3