Affiliation:
1. College of Computer Science and Technology, Zhejiang University, Hangzhou, China
2. Zhejiang Lab, Hangzhou, China
Abstract
Event-based cameras have attracted increasing attention due to their advantages of biologically inspired paradigm and low power consumption. Since event-based cameras record the visual input as asynchronous discrete events, they are inherently suitable to cooperate with the spiking neural network (SNN). Existing works of SNNs for processing events mainly focus on the task of object recognition. However, events from the event-based camera are triggered by dynamic changes, which makes it an ideal choice to capture actions in the visual scene. Inspired by the dorsal stream in visual cortex, we propose a hierarchical SNN architecture for event-based action recognition using motion information. Motion features are extracted and utilized from events to local and finally to global perception for action recognition. To the best of the authors’ knowledge, it is the first attempt of SNN to apply motion information to event-based action recognition. We evaluate our proposed SNN on three event-based action recognition datasets, including our newly published DailyAction-DVS dataset comprising 12 actions collected under diverse recording conditions. Extensive experimental results show the effectiveness of motion information and our proposed SNN architecture for event-based action recognition.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献