Affiliation:
1. School of Information and Software Engineering, University of Electronic Science and Technology of China
2. Iowa State University, Ames
3. University of Maryland, College park
Abstract
Trajectory-User Linking (TUL) is an essential task in Geo-tagged social media (GTSM) applications, enabling personalized Point of Interest (POI) recommendation and activity identification. Existing works on mining mobility patterns often model trajectories using Markov Chains (MC) or recurrent neural networks (RNN) -- either assuming independence between non-adjacent locations or following a shallow generation process. However, most of them ignore the fact that human trajectories are often sparse, high-dimensional and may contain embedded hierarchical structures. We tackle the TUL problem with a semi-supervised learning framework, called TULVAE (TUL via Variational AutoEncoder), which learns the human mobility in a neural generative architecture with stochastic latent variables that span hidden states in RNN. TULVAE alleviates the data sparsity problem by leveraging large-scale unlabeled data and represents the hierarchical and structural semantics of trajectories with high-dimensional latent variables. Our experiments demonstrate that TULVAE improves efficiency and linking performance in real GTSM datasets, in comparison to existing methods.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献