Trajectory-User Linking via Variational AutoEncoder

Author:

Zhou Fan1,Gao Qiang1,Trajcevski Goce2,Zhang Kunpeng3,Zhong Ting1,Zhang Fengli1

Affiliation:

1. School of Information and Software Engineering, University of Electronic Science and Technology of China

2. Iowa State University, Ames

3. University of Maryland, College park

Abstract

Trajectory-User Linking (TUL) is an essential task in Geo-tagged social media (GTSM) applications, enabling personalized Point of Interest (POI) recommendation and activity identification. Existing works on mining mobility patterns often model trajectories using Markov Chains (MC) or recurrent neural networks (RNN) -- either assuming independence between non-adjacent locations or following a shallow generation process. However, most of them ignore the fact that human trajectories are often sparse, high-dimensional and may contain embedded hierarchical structures. We tackle the TUL problem with a semi-supervised learning framework, called TULVAE (TUL via Variational AutoEncoder), which learns the human mobility in a neural generative architecture with stochastic latent variables that span hidden states in RNN. TULVAE alleviates the data sparsity problem by leveraging large-scale unlabeled data and represents the hierarchical and structural semantics of trajectories with high-dimensional latent variables. Our experiments demonstrate that TULVAE improves efficiency and linking performance in real GTSM datasets, in comparison to existing methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trajectory-user linking via Complexed-Valued Multi-Layer Perception with Fast Fourier Transform;2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2024-06-07

2. Leveraging Transformer Architecture for Effective Trajectory-User Linking (TUL) Attack and Its Mitigation;Lecture Notes in Computer Science;2024

3. User re-identification via human mobility trajectories with siamese transformer networks;Applied Intelligence;2023-12-20

4. TULAM: trajectory-user linking via attention mechanism;Science China Information Sciences;2023-12-19

5. Linking Mobility Traces of the Same User Across Different Datasets;2023 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI);2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3