Affiliation:
1. Institute of Information Engineering, Chinese Academy of Sciences
2. School of Cyber Security, University of Chinese Academy of Sciences
3. School of Information Science and Technology, University of Science and Technology of China
Abstract
In this work, we propose an entirely learning-based method to automatically synthesize text sequence in natural images leveraging conditional adversarial networks. As vanilla GANs are clumsy to capture structural text patterns, directly employing GANs for text image synthesis typically results in illegible images. Therefore, we design a two-stage architecture to generate repeated characters in images. Firstly, a character generator attempts to synthesize local character appearance independently, so that the legible characters in sequence can be obtained. To achieve style consistency of characters, we propose a novel style loss based on variance-minimization. Secondly, we design a pixel-manipulation word generator constrained by self-regularization, which learns to convert local characters to plausible word image. Experiments on SVHN dataset and ICDAR, IIIT5K datasets demonstrate our method is able to synthesize visually appealing text images. Besides, we also show the high-quality images synthesized by our method can be used to boost the performance of a scene text recognition algorithm.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献