Pay Attention to Devils: A Photometric Stereo Network for Better Details

Author:

Ju Yakun1,Lam Kin-Man2,Chen Yang1,Qi Lin1,Dong Junyu1

Affiliation:

1. Ocean University of China

2. The Hong Kong Polytechnic University

Abstract

We present an attention-weighted loss in a photometric stereo neural network to improve 3D surface recovery accuracy in complex-structured areas, such as edges and crinkles, where existing learning-based methods often failed. Instead of using a uniform penalty for all pixels, our method employs the attention-weighted loss learned in a self-supervise manner for each pixel, avoiding blurry reconstruction result in such difficult regions. The network first estimates a surface normal map and an adaptive attention map, and then the latter is used to calculate a pixel-wise attention-weighted loss that focuses on complex regions. In these regions, the attention-weighted loss applies higher weights of the detail-preserving gradient loss to produce clear surface reconstructions. Experiments on real datasets show that our approach significantly outperforms traditional photometric stereo algorithms and state-of-the-art learning-based methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Isolation and distillation network for generalized zero-shot learning;Neural Computing and Applications;2024-05-02

2. SKZC: self-distillation and k-nearest neighbor-based zero-shot classification;Journal of Engineering and Applied Science;2024-04-22

3. A Method of Micro-Geometric Details Preserving in Surface Reconstruction from Gradient;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

4. DiLiGenT-Π: Photometric Stereo for Planar Surfaces with Rich Details – Benchmark Dataset and Beyond;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. A Critical Analysis of NeRF-Based 3D Reconstruction;Remote Sensing;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3