Multi-Agent Reinforcement Learning for Traffic Signal Control through Universal Communication Method

Author:

Jiang Qize123,Qin Minhao123,Shi Shengmin123,Sun Weiwei123,Zheng Baihua4

Affiliation:

1. School of Computer Science, Fudan University

2. Shanghai Key Laboratory of Data Science, Fudan University

3. Shanghai Institute of Intelligent Electronics & Systems

4. School of Computing and Information Systems, Singapore Management University

Abstract

How to coordinate the communication among intersections effectively in real complex traffic scenarios with multi-intersection is challenging. Existing approaches only enable the communication in a heuristic manner without considering the content/importance of information to be shared. In this paper, we propose a universal communication form UniComm between intersections. UniComm embeds massive observations collected at one agent into crucial predictions of their impact on its neighbors, which improves the communication efficiency and is universal across existing methods. We also propose a concise network UniLight to make full use of communications enabled by UniComm. Experimental results on real datasets demonstrate that UniComm universally improves the performance of existing state-of-the-art methods, and UniLight significantly outperforms existing methods on a wide range of traffic situations. Source codes are available at https://github.com/zyr17/UniLight.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RELight: a random ensemble reinforcement learning based method for traffic light control;Applied Intelligence;2023-12-05

2. Mitigating Action Hysteresis in Traffic Signal Control with Traffic Predictive Reinforcement Learning;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

3. Cooperation Skill Motivated Reinforcement Learning for Traffic Signal Control;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3