Affiliation:
1. The University of Tokyo
2. Institute of Industrial Science, the University of Tokyo
Abstract
Keeping up to date on emerging entities that appear every day is indispensable for various applications, such as social-trend analysis and marketing research. Previous studies have attempted to detect unseen entities that are not registered in a particular knowledge base as emerging entities and consequently find non-emerging entities since the absence of entities in knowledge bases does not guarantee their emergence. We therefore introduce a novel task of discovering truly emerging entities when they have just been introduced to the public through microblogs and propose an effective method based on time-sensitive distant supervision, which exploits distinctive early-stage contexts of emerging entities.
Experimental results with a large-scale Twitter archive show that the proposed method achieves 83.2% precision of the top 500 discovered emerging entities, which outperforms baselines based on unseen entity recognition with burst detection.
Besides notable emerging entities, our method can discover massive long-tail and homographic emerging entities.
An evaluation of relative recall shows that the method detects 80.4% emerging entities newly registered in Wikipedia; 92.8% of them are discovered earlier than their registration in Wikipedia, and the average lead-time is more than one year (578 days).
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献