Affiliation:
1. Centre National de la Recherche Scientifique (CNRS)
2. LIP6, Sorbonne University
3. University of Manitoba
Abstract
Bin packing is a classic optimization problem with a wide range of applications from load balancing to supply chain management. In this work, we study the online variant of the problem, in which a sequence of items of various sizes must be placed into a minimum number of bins of uniform capacity. The online algorithm is enhanced with a (potentially erroneous) prediction concerning the frequency of item sizes in the sequence. We design and analyze online algorithms with efficient tradeoffs between the consistency (i.e., the competitive ratio assuming no prediction error) and the robustness (i.e., the competitive ratio under adversarial error), and whose performance degrades near-optimally as a function of the prediction error. This is the first theoretical and experimental study of online bin packing in the realistic setting of learnable predictions. Previous work addressed only extreme cases with respect to the prediction error, and relied on overly powerful and error-free oracles.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献