A General Approach to Running Time Analysis of Multi-objective Evolutionary Algorithms

Author:

Bian Chao1,Qian Chao1,Tang Ke2

Affiliation:

1. Anhui Province Key Lab of Big Data Analysis and Application, University of Science and Technology of China

2. Shenzhen Key Lab of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology

Abstract

Evolutionary algorithms (EAs) have been widely applied to solve multi-objective optimization problems. In contrast to great practical successes, their theoretical foundations are much less developed, even for the essential theoretical aspect, i.e., running time analysis. In this paper, we propose a general approach to estimating upper bounds on the expected running time of multi-objective EAs (MOEAs), and then apply it to diverse situations, including bi-objective and many-objective optimization as well as exact and approximate analysis. For some known asymptotic bounds, our analysis not only provides their leading constants, but also improves them asymptotically. Moreover, our results provide some theoretical justification for the good empirical performance of MOEAs in solving multi-objective combinatorial problems.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Multiobjective Evolutionary Algorithms on Fitness Function With Time-Linkage Property;IEEE Transactions on Evolutionary Computation;2024-06

2. Near-Tight Runtime Guarantees for Many-Objective Evolutionary Algorithms;Lecture Notes in Computer Science;2024

3. A First Running Time Analysis of the Strength Pareto Evolutionary Algorithm 2 (SPEA2);Lecture Notes in Computer Science;2024

4. A Gentle Introduction to Theory (for Non-Theoreticians);Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

5. A gentle introduction to theory (for non-theoreticians);Proceedings of the Genetic and Evolutionary Computation Conference Companion;2022-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3