Affiliation:
1. Anhui Province Key Lab of Big Data Analysis and Application, University of Science and Technology of China
2. Shenzhen Key Lab of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology
Abstract
Evolutionary algorithms (EAs) have been widely applied to solve multi-objective optimization problems. In contrast to great practical successes, their theoretical foundations are much less developed, even for the essential theoretical aspect, i.e., running time analysis. In this paper, we propose a general approach to estimating upper bounds on the expected running time of multi-objective EAs (MOEAs), and then apply it to diverse situations, including bi-objective and many-objective optimization as well as exact and approximate analysis. For some known asymptotic bounds, our analysis not only provides their leading constants, but also improves them asymptotically. Moreover, our results provide some theoretical justification for the good empirical performance of MOEAs in solving multi-objective combinatorial problems.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献