Noise-Resilient Similarity Preserving Network Embedding for Social Networks

Author:

Qiu Zhenyu12,Hu Wenbin13,Wu Jia4,Tang ZhongZheng2,Jia Xiaohua2

Affiliation:

1. School of Computer Science, Wuhan University

2. Department of Computer Science, City University of Hong Kong

3. Shenzhen Research Institute, Wuhan University

4. Department of Computing, Macquarie University

Abstract

Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the structure and inherent properties of the network. Most existing network embedding methods didn't consider network noise. However, it is almost impossible to observe the actual structure of a real-world network without noise.  The noise in the network will affect the performance of network embedding dramatically. In this paper, we aim to exploit node similarity to address the problem of social network embedding with noise and propose a node similarity preserving (NSP) embedding method. NSP exploits a comprehensive similarity index to quantify the authenticity of the observed network structure. Then we propose an algorithm to construct a correction matrix to reduce the influence of noise. Finally, an objective function for accurate network embedding is proposed and an efficient algorithm to solve the optimization problem is provided. Extensive experimental results on a variety of applications of real-world networks with noise show the superior performance of the proposed method over the state-of-the-art methods. 

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attributed network embedding with dual fusion strategies;Journal of Experimental & Theoretical Artificial Intelligence;2022-12-22

2. Feature-Attention Graph Convolutional Networks for Noise Resilient Learning;IEEE Transactions on Cybernetics;2022-08

3. Online Social Event Detection via Filtering Strategy Graph Neural Network;Lecture Notes in Computer Science;2022

4. Pattern-Aware and Noise-Resilient Embedding Models;Lecture Notes in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3