Learning towards Abstractive Timeline Summarization

Author:

Chen Xiuying12,Chan Zhangming12,Gao Shen2,Yu Meng-Hsuan2,Zhao Dongyan12,Yan Rui12

Affiliation:

1. Center for Data Science, Peking University, Beijing, China

2. Institute of Computer Science and Technology, Peking University, Beijing, China

Abstract

Timeline summarization targets at concisely summarizing the evolution trajectory along the timeline and existing timeline summarization approaches are all based on extractive methods.In this paper, we propose the task of abstractive timeline summarization, which tends to concisely paraphrase the information in the time-stamped events.Unlike traditional document summarization, timeline summarization needs to model the time series information of the input events and summarize important events in chronological order.To tackle this challenge, we propose a memory-based timeline summarization model (MTS).Concretely, we propose a time-event memory to establish a timeline, and use the time position of events on this timeline to guide generation process.Besides, in each decoding step, we incorporate event-level information into word-level attention to avoid confusion between events.Extensive experiments are conducted on a large-scale real-world dataset, and the results show that MTS achieves the state-of-the-art performance in terms of both automatic and human evaluations.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Write Summary Step-by-Step: A Pilot Study of Stepwise Summarization;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

2. Towards a comprehensive understanding of the impact of large language models on natural language processing: challenges, opportunities and future directions^†;SCIENTIA SINICA Informationis;2023-09-01

3. From task to evaluation: an automatic text summarization review;Artificial Intelligence Review;2023-08-29

4. A Topic-aware Summarization Framework with Different Modal Side Information;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

5. PDSum: Prototype-driven Continuous Summarization of Evolving Multi-document Sets Stream;Proceedings of the ACM Web Conference 2023;2023-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3