Identifying Human Mobility via Trajectory Embeddings

Author:

Gao Qiang1,Zhou Fan1,Zhang Kunpeng2,Trajcevski Goce3,Luo Xucheng1,Zhang Fengli1

Affiliation:

1. University of Electronic Science and Technology of China

2. University of Maryland, College park

3. Northwestern University, Evanston

Abstract

Understanding human trajectory patterns is an important task in many location based social networks (LBSNs) applications, such as personalized recommendation and preference-based route planning. Most of the existing methods classify a trajectory (or its segments) based on spatio-temporal values and activities, into some predefined categories, e.g., walking or jogging. We tackle a novel trajectory classification problem: we identify and link trajectories to users who generate them in the LBSNs, a problem called Trajectory-User Linking (TUL). Solving the TUL problem is not a trivial task because: (1) the number of the classes (i.e., users) is much larger than the number of motion patterns in the common trajectory classification problems; and (2) the location based trajectory data, especially the check-ins, are often extremely sparse. To address these challenges, a Recurrent Neural Networks (RNN) based semi-supervised learning model, called TULER (TUL via Embedding and RNN) is proposed, which exploits the spatio-temporal data to capture the underlying semantics of user mobility patterns. Experiments conducted on real-world datasets demonstrate that TULER achieves better accuracy than the existing methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TrajRecovery: An Efficient Vehicle Trajectory Recovery Framework based on Urban-Scale Traffic Camera Records;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. A cross-domain user association scheme based on graph attention networks with trajectory embedding;Machine Learning;2024-08-21

3. A Deep Spatiotemporal Trajectory Representation Learning Framework for Clustering;IEEE Transactions on Intelligent Transportation Systems;2024-07

4. Mobility Data Science: Perspectives and Challenges;ACM Transactions on Spatial Algorithms and Systems;2024-06-30

5. Federated TimeGAN for Privacy Preserving Synthetic Trajectory Generation;2024 25th IEEE International Conference on Mobile Data Management (MDM);2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3