On Q-learning Convergence for Non-Markov Decision Processes

Author:

Majeed Sultan Javed1,Hutter Marcus1

Affiliation:

1. Research School of Computer Science, Australian National University

Abstract

Temporal-difference (TD) learning is an attractive, computationally efficient framework for model- free reinforcement learning. Q-learning is one of the most widely used TD learning technique that enables an agent to learn the optimal action-value function, i.e. Q-value function. Contrary to its widespread use, Q-learning has only been proven to converge on Markov Decision Processes (MDPs) and Q-uniform abstractions of finite-state MDPs. On the other hand, most real-world problems are inherently non-Markovian: the full true state of the environment is not revealed by recent observations. In this paper, we investigate the behavior of Q-learning when applied to non-MDP and non-ergodic domains which may have infinitely many underlying states. We prove that the convergence guarantee of Q-learning can be extended to a class of such non-MDP problems, in particular, to some non-stationary domains. We show that state-uniformity of the optimal Q-value function is a necessary and sufficient condition for Q-learning to converge even in the case of infinitely many internal states.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A controlling estimation bias method: Max_Mix_Min estimator for Q-learning;The Journal of Supercomputing;2024-05-26

2. Multi-view reinforcement learning for sequential decision-making with insufficient state information;International Journal of Machine Learning and Cybernetics;2023-10-24

3. Semi-Lipschitz functions and machine learning for discrete dynamical systems on graphs;Machine Learning;2022-03-23

4. Data Analytics of a Honeypot System Based on a Markov Decision Process Model;Recent Trends and Advances in Model Based Systems Engineering;2022

5. Non-Markovian Reinforcement Learning using Fractional Dynamics;2021 60th IEEE Conference on Decision and Control (CDC);2021-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3