TANGO: Commonsense Generalization in Predicting Tool Interactions for Mobile Manipulators

Author:

Tuli Shreshth12,Bansal Rajas1,Paul Rohan1,. Mausam1

Affiliation:

1. IIT Delhi

2. Imperial College London

Abstract

Robots assisting us in factories or homes must learn to make use of objects as tools to perform tasks, e.g., a tray for carrying objects. We consider the problem of learning commonsense knowledge of when a tool may be useful and how its use may be composed with other tools to accomplish a high-level task instructed by a human. We introduce TANGO, a novel neural model for predicting task-specific tool interactions. TANGO is trained using demonstrations obtained from human teachers instructing a virtual robot in a physics simulator. TANGO encodes the world state consisting of objects and symbolic relationships between them using a graph neural network. The model learns to attend over the scene using knowledge of the goal and the action history, finally decoding the symbolic action to execute. Crucially, we address generalization to unseen environments where some known tools are missing, but alternative unseen tools are present. We show that by augmenting the representation of the environment with pre-trained embeddings derived from a knowledge-base, the model can generalize effectively to novel environments. Experimental results show a 60.5-78.9% improvement over the baseline in predicting successful symbolic plans in unseen settings for a simulated mobile manipulator.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scene-Aware Activity Program Generation with Language Guidance;ACM Transactions on Graphics;2023-12-05

2. PreGAN: Preemptive Migration Prediction Network for Proactive Fault-Tolerant Edge Computing;IEEE INFOCOM 2022 - IEEE Conference on Computer Communications;2022-05-02

3. PACS: A Dataset for Physical Audiovisual CommonSense Reasoning;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3