Transfer Learning via Optimal Transportation for Integrative Cancer Patient Stratification

Author:

Liu Ziyu1,Shao Wei2,Zhang Jie3,Zhang Min1,Huang Kun24

Affiliation:

1. Department of Statistics, Purdue University

2. Biostatistics and Health Data Science, Indiana University School of Medicine

3. Department of Medical and Molecular Genetics, Indiana University School of Medicine

4. Regenstrief Institute, Indianapolis

Abstract

The Stratification of early-stage cancer patients for the prediction of clinical outcome is a challenging task since cancer is associated with various molecular aberrations. A single biomarker often cannot provide sufficient information to stratify early-stage patients effectively. Understanding the complex mechanism behind cancer development calls for exploiting biomarkers from multiple modalities of data such as histopathology images and genomic data. The integrative analysis of these biomarkers sheds light on cancer diagnosis, subtyping, and prognosis. Another difficulty is that labels for early-stage cancer patients are scarce and not reliable enough for predicting survival times. Given the fact that different cancer types share some commonalities, we explore if the knowledge learned from one cancer type can be utilized to improve prognosis accuracy for another cancer type. We propose a novel unsupervised multi-view transfer learning algorithm to simultaneously analyze multiple biomarkers in different cancer types. We integrate multiple views using non-negative matrix factorization and formulate the transfer learning model based on the Optimal Transport theory to align features of different cancer types. We evaluate the stratification performance on three early-stage cancers from the Cancer Genome Atlas (TCGA) project. Comparing with other benchmark methods, our framework achieves superior accuracy for patient outcome prediction.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Missing Fault Data Processing Method Based On Improved Harmony Search Algorithm;2022 IEEE International Conference on Networking, Sensing and Control (ICNSC);2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3