Learning Explanatory Rules from Noisy Data (Extended Abstract)

Author:

Evans Richard1,Grefenstette Edward1

Affiliation:

1. DeepMind

Abstract

Artificial Neural Networks are powerful function approximators capable of modelling solutions to a wide variety of problems, both supervised and unsupervised. As their size and expressivity increases, so too does the variance of the model, yielding a nearly ubiquitous overfitting problem. Although mitigated by a variety of model regularisation methods, the common cure is to seek large amounts of training data—which is not necessarily easily obtained—that sufficiently approximates the data distribution of the domain we wish to test on. In contrast, logic programming methods such as Inductive Logic Programming offer an extremely data-efficient process by which models can be trained to reason on symbolic domains. However, these methods are unable to deal with the variety of domains neural networks can be applied to: they are not robust to noise in or mislabelling of inputs, and perhaps more importantly, cannot be applied to non-symbolic domains where the data is ambiguous, such as operating on raw pixels. In this paper, we propose a Differentiable Inductive Logic framework (∂ILP), which can not only solve tasks which traditional ILP systems are suited for, but shows a robustness to noise and error in the training data which ILP cannot cope with. Furthermore, as it is trained by backpropagation against a likelihood objective, it can be hybridised by connecting it with neural networks over ambiguous data in order to be applied to domains which ILP cannot address, while providing data efficiency and generalisation beyond what neural networks on their own can achieve.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Spatiotemporal Modeling for Real-Time Data-Driven Actionable Insights;Lecture Notes in Networks and Systems;2024

2. Inductive Logic Programming for Explainable Graph Clustering;2023 IEEE International Conference on Knowledge Graph (ICKG);2023-12-01

3. Shaped-Charge Learning Architecture for the Human–Machine Teams;Entropy;2023-06-12

4. A General-Purpose Machine Reasoning Engine;Artificial General Intelligence;2023

5. Learning Logic Programs Using Neural Networks by Exploiting Symbolic Invariance;Inductive Logic Programming;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3