Discriminative and Correlative Partial Multi-Label Learning

Author:

Wang Haobo12,Liu Weiwei3,Zhao Yang2,Zhang Chen2,Hu Tianlei12,Chen Gang12

Affiliation:

1. Key Lab of Intelligent Computing Based Big Data of Zhejiang Province, Zhejiang University

2. College of Computer Science and Technology, Zhejiang University

3. School of Computer Science, Wuhan University

Abstract

In partial label learning (PML), each instance is associated with a candidate label set that contains multiple relevant labels and other false positive labels. The most challenging issue for the PML is that the training procedure is prone to be affected by the labeling noise. We observe that state-of-the-art PML methods are either powerless to disambiguate the correct labels from the candidate labels or incapable of extracting the label correlations sufficiently. To fill this gap, a two-stage DiscRiminative and correlAtive partial Multi-label leArning (DRAMA) algorithm is presented in this work. In the first stage, a confidence value is learned for each label by utilizing the feature manifold, which indicates how likely a label is correct. In the second stage, a gradient boosting model is induced to fit the label confidences. Specifically, to explore the label correlations, we augment the feature space by the previously elicited labels on each boosting round. Extensive experiments on various real-world datasets clearly validate the superiority of our proposed method.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3