Comparing Kullback-Leibler Divergence and Mean Squared Error Loss in Knowledge Distillation

Author:

Kim Taehyeon1,Oh Jaehoon2,Kim Nak Yil1,Cho Sangwook1,Yun Se-Young1

Affiliation:

1. Graduate School of Artificial Intelligence, KAIST

2. Graduate School of Knowledge Service Engineering, KAIST

Abstract

Knowledge distillation (KD), transferring knowledge from a cumbersome teacher model to a lightweight student model, has been investigated to design efficient neural architectures. Generally, the objective function of KD is the Kullback-Leibler (KL) divergence loss between the softened probability distributions of the teacher model and the student model with the temperature scaling hyperparameter τ. Despite its widespread use, few studies have discussed how such softening influences generalization. Here, we theoretically show that the KL divergence loss focuses on the logit matching when τ increases and the label matching when τ goes to 0 and empirically show that the logit matching is positively correlated to performance improvement in general. From this observation, we consider an intuitive KD loss function, the mean squared error (MSE) between the logit vectors, so that the student model can directly learn the logit of the teacher model. The MSE loss outperforms the KL divergence loss, explained by the penultimate layer representations difference between the two losses. Furthermore, we show that sequential distillation can improve performance and that KD, using the KL divergence loss with small τ particularly, mitigates the label noise. The code to reproduce the experiments is publicly available online at https://github.com/jhoon-oh/kd_data/.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive overview of graph neural network-based approaches to clustering for spatial transcriptomics;Computational and Structural Biotechnology Journal;2024-12

2. SeDPGK: Semi-supervised software defect prediction with graph representation learning and knowledge distillation;Information and Software Technology;2024-10

3. Backward induction-based deep image search;PLOS ONE;2024-09-09

4. PanDa: Prompt Transfer Meets Knowledge Distillation for Efficient Model Adaptation;IEEE Transactions on Knowledge and Data Engineering;2024-09

5. Lightweight Brain Tumor Diagnosis via Knowledge Distillation;2024 International Conference on Multimedia Analysis and Pattern Recognition (MAPR);2024-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3