Siamese CNN-BiLSTM Architecture for 3D Shape Representation Learning

Author:

Dai Guoxian123,Xie Jin12,Fang Yi124

Affiliation:

1. NYU Multimedia and Visual Computing Lab

2. Dept. of ECE, NYU Abu Dhabi, UAE

3. Dept. of CSE, NYU Tandon School of Engineering, USA

4. Dept. of ECE, NYU Tandon School of Engineering, USA

Abstract

Learning a 3D shape representation from a collection of its rendered 2D images has been extensively studied. However, existing view-based techniques have not yet fully exploited the information among all the views of projections. In this paper, by employing recurrent neural network to efficiently capture features across different views, we propose a siamese CNN-BiLSTM network for 3D shape representation learning. The proposed method minimizes a discriminative loss function to learn a deep nonlinear transformation, mapping 3D shapes from the original space into a nonlinear feature space. In the transformed space, the distance of 3D shapes with the same label is minimized, otherwise the distance is maximized to a large margin. Specifically, the 3D shapes are first projected into a group of 2D images from different views. Then convolutional neural network (CNN) is adopted to extract features from different view images, followed by a bidirectional long short-term memory (LSTM) to aggregate information across different views. Finally, we construct the whole CNN-BiLSTM network into a siamese structure with contrastive loss function. Our proposed method is evaluated on two benchmarks, ModelNet40 and SHREC 2014, demonstrating superiority over the state-of-the-art methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3