Affiliation:
1. University of Bremen, Germany
2. CoDesign Lab / Cognitive Vision
3. Örebro University, Sweden
Abstract
We demonstrate the need and potential of systematically integrated vision and semantics solutions for visual sensemaking (in the backdrop of autonomous driving).
A general method for online visual sensemaking using answer set programming is systematically formalised and fully implemented. The method integrates state of the art in visual computing, and is developed as a modular framework usable within hybrid architectures for perception & control. We evaluate and demo with community established benchmarks KITTIMOD and MOT. As use-case, we focus on the significance of human-centred visual sensemaking ---e.g., semantic representation and explainability, question-answering, commonsense interpolation--- in safety-critical autonomous driving situations.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献