CFM: Convolutional Factorization Machines for Context-Aware Recommendation

Author:

Xin Xin1,Chen Bo2,He Xiangnan3,Wang Dong2,Ding Yue2,Jose Joemon1

Affiliation:

1. University of Glasgow

2. Shanghai Jiao Tong University

3. University of Science and Technology of China

Abstract

Factorization Machine (FM) is an effective solution for context-aware recommender systems (CARS) which models second-order feature interactions by inner product. However, it is insufficient to capture high-order and nonlinear interaction signals. While several recent efforts have enhanced FM with neural networks, they assume the embedding dimensions are independent from each other and model high-order interactions in a rather implicit manner. In this paper, we propose Convolutional Factorization Machine (CFM) to address above limitations. Specifically, CFM models second-order interactions with outer product, resulting in ''images'' which capture correlations between embedding dimensions. Then all generated ''images'' are stacked, forming an interaction cube. 3D convolution is applied above it to learn high-order interaction signals in an explicit approach. Besides, we also leverage a self-attention mechanism to perform the pooling of features to reduce time complexity. We conduct extensive experiments on three real-world datasets, demonstrating significant improvement of CFM over competing methods for context-aware top-k recommendation.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Developments in Recommender Systems: A Survey [Review Article];IEEE Computational Intelligence Magazine;2024-05

2. Generalized Embedding Machines for Recommender Systems;Machine Intelligence Research;2024-01-12

3. Pairwise Intent Graph Embedding Learning for Context-Aware Recommendation;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14

4. Dynamic Personalized POI Sequence Recommendation with Fine-Grained Contexts;ACM Transactions on Internet Technology;2023-05-19

5. COMET: Convolutional Dimension Interaction for Collaborative Filtering;ACM Transactions on Intelligent Systems and Technology;2023-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3