Hypertron: Explicit Social-Temporal Hypergraph Framework for Multi-Agent Forecasting

Author:

Tian Yu12,Huang Xingliang12,Niu Ruigang12,Yu Hongfeng1,Wang Peijin1,Sun Xian12

Affiliation:

1. Key Laboratory of Network Information System Technology, Aerospace Information Research Institute, Chinese Academy of Sciences

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences

Abstract

Forecasting the future trajectories of multiple agents is a core technology for human-robot interaction systems. To predict multi-agent trajectories more accurately, it is inevitable that models need to improve interpretability and reduce redundancy. However, many methods adopt implicit weight calculation or black-box networks to learn the semantic interaction of agents, which obviously lack enough interpretation. In addition, most of the existing works model the relation among all agents in a one-to-one manner, which might lead to irrational trajectory predictions due to its redundancy and noise. To address the above issues, we present Hypertron, a human-understandable and lightweight hypergraph-based multi-agent forecasting framework, to explicitly estimate the motions of multiple agents and generate reasonable trajectories. The framework explicitly interacts among multiple agents and learns their latent intentions by our coarse-to-fine hypergraph convolution interaction module. Our experiments on several challenging real-world trajectory forecasting datasets show that Hypertron outperforms a wide array of state-of-the-art methods while saving over 60% parameters and reducing 30% inference time.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HHGNN: Heterogeneous Hypergraph Neural Network for Traffic Agents Trajectory Prediction in Grouping Scenarios;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Instance-Aware Contour Learning for Vectorized Building Extraction From Remote Sensing Imagery;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

3. Goal-Guided and Interaction-Aware State Refinement Graph Attention Network for Multi-Agent Trajectory Prediction;IEEE Robotics and Automation Letters;2024-01

4. Invariant Meets Specific: A Scalable Harmful Memes Detection Framework;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3