Discriminative Feature Selection via A Structured Sparse Subspace Learning Module

Author:

Wang Zheng1,Nie Feiping1,Tian Lai1,Wang Rong1,Li Xuelong1

Affiliation:

1. Northwestern Polytechnical University

Abstract

In this paper, we first propose a novel Structured Sparse Subspace Learning S^3L module to address the long-standing subspace sparsity issue. Elicited by proposed module, we design a new discriminative feature selection method, named Subspace Sparsity Discriminant Feature Selection S^2DFS which enables the following new functionalities: 1) Proposed S^2DFS method directly joints trace ratio objective and structured sparse subspace constraint via L2,0-norm to learn a row-sparsity subspace, which improves the discriminability of model and overcomes the parameter-tuning trouble with comparison to the methods used L2,1-norm regularization; 2) An alternative iterative optimization algorithm based on the proposed S^3L module is presented to explicitly solve the proposed problem with a closed-form solution and strict convergence proof. To our best knowledge, such objective function and solver are first proposed in this paper, which provides a new though for the development of feature selection methods. Extensive experiments conducted on several high-dimensional datasets demonstrate the discriminability of selected features via S^2DFS with comparison to several related SOTA feature selection methods. Source matlab code: https://github.com/StevenWangNPU/L20-FS.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3