Behavioral Cloning from Observation

Author:

Torabi Faraz1,Warnell Garrett2,Stone Peter1

Affiliation:

1. The University of Texas at Austin

2. U.S. Army Research Laboratory

Abstract

Humans often learn how to perform tasks via imitation: they observe others perform a task, and then very quickly infer the appropriate actions to take based on their observations. While extending this paradigm to autonomous agents is a well-studied problem in general, there are two particular aspects that have largely been overlooked: (1) that the learning is done from observation only (i.e., without explicit action information), and (2) that the learning is typically done very quickly. In this work, we propose a two-phase, autonomous imitation learning technique called behavioral cloning from observation (BCO), that aims to provide improved performance with respect to both of these aspects. First, we allow the agent to acquire experience in a self-supervised fashion. This experience is used to develop a model which is then utilized to learn a particular task by observing an expert perform that task without the knowledge of the specific actions taken. We experimentally compare BCO to imitation learning methods, including the state-of-the-art, generative adversarial imitation learning (GAIL) technique, and we show comparable task performance in several different simulation domains while exhibiting increased learning speed after expert trajectories become available.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalization error for portable rewards in transfer imitation learning;Knowledge-Based Systems;2024-09

2. Metis: a python-based user interface to collect expert feedback for generative chemistry models;Journal of Cheminformatics;2024-08-14

3. Coupled Conditional Neural Movement Primitives;Neural Computing and Applications;2024-08-02

4. Skill enhancement learning with knowledge distillation;Science China Information Sciences;2024-07-22

5. Biomimetic learning of hand gestures in a humanoid robot;Frontiers in Human Neuroscience;2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3