Affiliation:
1. School of Electronic Engineering, Xidian University
2. Dept. of CSE & MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
3. Beihang University
Abstract
Deep network based cross-modal retrieval has recently made significant progress. However, bridging modality gap to further enhance the retrieval accuracy still remains a crucial bottleneck. In this paper, we propose a Graph Convolutional Hashing (GCH) approach, which learns modality-unified binary codes via an affinity graph. An end-to-end deep architecture is constructed with three main components: a semantic encoder module, two feature encoding networks, and a graph convolutional network (GCN). We design a semantic encoder as a teacher module to guide the feature encoding process, a.k.a. student module, for semantic information exploiting. Furthermore, GCN is utilized to explore the inherent similarity structure among data points, which will help to generate discriminative hash codes. Extensive experiments on three benchmark datasets demonstrate that the proposed GCH outperforms the state-of-the-art methods.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献