Graph Convolutional Network Hashing for Cross-Modal Retrieval

Author:

Xu Ruiqing1,Li Chao1,Yan Junchi2,Deng Cheng1,Liu Xianglong3

Affiliation:

1. School of Electronic Engineering, Xidian University

2. Dept. of CSE & MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University

3. Beihang University

Abstract

Deep network based cross-modal retrieval has recently made significant progress. However, bridging modality gap to further enhance the retrieval accuracy still remains a crucial bottleneck. In this paper, we propose a Graph Convolutional Hashing (GCH) approach, which learns modality-unified binary codes via an affinity graph. An end-to-end deep architecture is constructed with three main components: a semantic encoder module, two feature encoding networks, and a graph convolutional network (GCN). We design a semantic encoder as a teacher module to guide the feature encoding process, a.k.a. student module, for semantic information exploiting. Furthermore, GCN is utilized to explore the inherent similarity structure among data points, which will help to generate discriminative hash codes. Extensive experiments on three benchmark datasets demonstrate that the proposed GCH outperforms the state-of-the-art methods.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Joint-Modal Graph Convolutional Hashing for unsupervised cross-modal retrieval;Neurocomputing;2024-08

2. Structures Aware Fine-Grained Contrastive Adversarial Hashing for Cross-Media Retrieval;IEEE Transactions on Knowledge and Data Engineering;2024-07

3. Unsupervised Multimodal Graph Contrastive Semantic Anchor Space Dynamic Knowledge Distillation Network for Cross-Media Hash Retrieval;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Ambiguous Entity Oriented Targeted Document Detection;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Deep Multimodal Data Fusion;ACM Computing Surveys;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3