Adaptive Manifold Regularized Matrix Factorization for Data Clustering

Author:

Zhang Lefei1,Zhang Qian2,Du Bo1,You Jane3,Tao Dacheng4

Affiliation:

1. School of Computer, Wuhan University

2. Alibaba Group

3. Department of Computing, The Hong Kong Polytechnic University

4. UBTech Sydney AI Institute and SIT, FEIT, The University of Sydney, Australia

Abstract

Data clustering is the task to group the data samples into certain clusters based on the relationships of samples and structures hidden in data, and it is a fundamental and important topic in data mining and machine learning areas. In the literature, the spectral clustering is one of the most popular approaches and has many variants in recent years. However, the performance of spectral clustering is determined by the affinity matrix, which is always computed by a predefined model (e.g., Gaussian kernel function) with carefully tuned parameters combination, and may far from optimal in practice. In this paper, we propose to consider the observed data clustering as a robust matrix factorization point of view, and learn an affinity matrix simultaneously to regularize the proposed matrix factorization. The solution of the proposed adaptive manifold regularized matrix factorization (AMRMF) is reached by a novel Augmented Lagrangian Multiplier (ALM) based algorithm. The experimental results on standard clustering datasets demonstrate the superior performance over the exist alternatives.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Clustering From Subset-Clustering to Fullset-Membership;IEEE Transactions on Fuzzy Systems;2024-09

2. Preprocessed Spectral Clustering with Higher Connectivity for Robustness in Real-World Applications;International Journal of Computational Intelligence Systems;2024-04-08

3. Multi-View Discrete Clustering: A Concise Model;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-12

4. Discrete and Balanced Spectral Clustering With Scalability;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-12

5. Noise-aware clustering based on maximum correntropy criterion and adaptive graph regularization;Information Sciences;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3