Explainable Certain Answers

Author:

Amendola Giovanni1,Libkin Leonid2

Affiliation:

1. Mathematics and Computer Science, University of Calabria

2. School of Informatics, University of Edinburgh

Abstract

When a dataset is not fully specified and can represent many possible worlds, one commonly answers queries by computing certain answers to them. A natural way of defining certainty is to say that an answer is certain if it is consistent with query answers in all possible worlds, and is furthermore the most informative answer with this property. However, the existence and complexity of such answers is not yet well understood even for relational databases. Thus in applications one tends to use different notions, essentially the intersection of query answers in possible worlds. However, justification of such notions has long been questioned. This leads to two problems: are certain answers based on informativeness feasible in applications? and can a clean justification be provided for intersection-based notions? Our goal is to answer both. For the former, we show that such answers may not exist, or be very large, even in simple cases of querying incomplete data. For the latter, we add the concept of explanations to the notion of informativeness: it shows not only that one object is more informative than the other, but also says why this is so. This leads to a modified notion of certainty: explainable certain answers. We present a general framework for reasoning about them, and show that for open and closed world relational databases, they are precisely the common intersection-based notions of certainty.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coping with Incomplete Data: Recent Advances;Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2020-05-29

2. Extending Bell Numbers for Parsimonious Chase Estimation;Logics in Artificial Intelligence;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3