Cross-modal Bidirectional Translation via Reinforcement Learning

Author:

Qi Jinwei1,Peng Yuxin1

Affiliation:

1. Institute of Computer Science and Technology, Peking University, Beijing 100871, China

Abstract

The inconsistent distribution and representation of image and text make it quite challenging to measure their similarity, and construct correlation between them. Inspired by neural machine translation to establish a corresponding relationship between two entirely different languages, we attempt to treat images as a special kind of language to provide visual descriptions, so that translation can be conduct between bilingual pair of image and text to effectively explore cross-modal correlation. Thus, we propose Cross-modal Bidirectional Translation (CBT) approach, and further explore the utilization of reinforcement learning to improve the translation process. First, a cross-modal translation mechanism is proposed, where image and text are treated as bilingual pairs, and cross-modal correlation can be effectively captured in both feature spaces of image and text by bidirectional translation training. Second, cross-modal reinforcement learning is proposed to perform a bidirectional game between image and text, which is played as a round to promote the bidirectional translation process. Besides, both inter-modality and intra-modality reward signals can be extracted to provide complementary clues for boosting cross-modal correlation learning. Experiments are conducted to verify the performance of our proposed approach on cross-modal retrieval, compared with 11 state-of-the-art methods on 3 datasets.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Supervised Multi-View Learning With Graph Priors;IEEE Transactions on Image Processing;2024

2. Flexible Material Quality Assessment Based on Visual–Tactile Fusion;IEEE Transactions on Instrumentation and Measurement;2024

3. SemLog: A Semantics-based Approach for Anomaly Detection in Big Data System Logs;2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS);2023-12-17

4. Synthetized Multilanguage OCR Using CRNN and SVTR Models for Realtime Collaborative Tools;Applied Sciences;2023-03-30

5. Cross-Modal Audio-Text Retrieval via Sequential Feature Augmentation;Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning;2023-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3