TiRGN: Time-Guided Recurrent Graph Network with Local-Global Historical Patterns for Temporal Knowledge Graph Reasoning

Author:

Li Yujia1,Sun Shiliang1,Zhao Jing1

Affiliation:

1. East China Normal University

Abstract

Temporal knowledge graphs (TKGs) have been widely used in various fields that model the dynamics of facts along the timeline. In the extrapolation setting of TKG reasoning, since facts happening in the future are entirely unknowable, insight into history is the key to predicting future facts. However, it is still a great challenge for existing models as they hardly learn the characteristics of historical events adequately. From the perspective of historical development laws, comprehensively considering the sequential, repetitive, and cyclical patterns of historical facts is conducive to predicting future facts. To this end, we propose a novel representation learning model for TKG reasoning, namely TiRGN, a time-guided recurrent graph network with local-global historical patterns. Specifically, TiRGN uses a local recurrent graph encoder network to model the historical dependency of events at adjacent timestamps and uses the global history encoder network to collect repeated historical facts. After the trade-off between the two encoders, the final inference is performed by a decoder with periodicity. We use six benchmark datasets to evaluate the proposed method. The experimental results show that TiRGN outperforms the state-of-the-art TKG reasoning methods in most cases.

Publisher

International Joint Conferences on Artificial Intelligence Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3