Multiwinner Voting with Fairness Constraints

Author:

Celis L. Elisa1,Huang Lingxiao1,Vishnoi Nisheeth K.1

Affiliation:

1. EPFL, Switzerland

Abstract

Multiwinner voting rules are used to select a small representative subset of candidates or items from a larger set given the preferences of voters. However, if candidates have sensitive attributes such as gender or ethnicity (when selecting a committee), or specified types such as political leaning (when selecting a subset of news items), an algorithm that chooses a subset by optimizing a multiwinner voting rule may be unbalanced in its selection -- it may under or over represent a particular gender or political orientation in the examples above. We introduce an algorithmic framework for multiwinner voting problems when there is an additional requirement that the selected subset should be ``fair'' with respect to a given set of attributes. Our framework provides the flexibility to (1) specify fairness with respect to multiple, non-disjoint attributes (e.g., ethnicity and gender) and (2) specify a score function. We study the computational complexity of this constrained multiwinner voting problem for monotone and submodular score functions and present several approximation algorithms and matching hardness of approximation results for various attribute group structure and types of score functions. We also present simulations that suggest that adding fairness constraints may not affect the scores significantly when compared to the unconstrained case.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fairness in Streaming Submodular Maximization Subject to a Knapsack Constraint;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Achieving Long-Term Fairness in Submodular Maximization Through Randomization;AIRO Springer Series;2024

3. Multi-winner Approval Voting with Grouped Voters;Combinatorial Optimization and Applications;2023-12-09

4. Trichotomous Votes Election with Graph Constraint;2023 18th International Conference on Intelligent Systems and Knowledge Engineering (ISKE);2023-11-17

5. Ensuring generalized fairness in batch classification;Scientific Reports;2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3