Document-level Relation Extraction as Semantic Segmentation

Author:

Zhang Ningyu1,Chen Xiang1,Xie Xin1,Deng Shumin1,Tan Chuanqi2,Chen Mosha2,Huang Fei2,Si Luo2,Chen Huajun1

Affiliation:

1. Zhejiang University & AZFT Joint Lab for Knowledge Engine & Hangzhou Innovation Center

2. Alibaba Group

Abstract

Document-level relation extraction aims to extract relations among multiple entity pairs from a document. Previously proposed graph-based or transformer-based models utilize the entities independently, regardless of global information among relational triples. This paper approaches the problem by predicting an entity-level relation matrix to capture local and global information, parallel to the semantic segmentation task in computer vision. Herein, we propose a Document U-shaped Network for document-level relation extraction. Specifically, we leverage an encoder module to capture the context information of entities and a U-shaped segmentation module over the image-style feature map to capture global interdependency among triples. Experimental results show that our approach can obtain state-of-the-art performance on three benchmark datasets DocRED, CDR, and GDA.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SSGU-CD: A combined semantic and structural information graph U-shaped network for document-level Chemical-Disease interaction extraction;Journal of Biomedical Informatics;2024-09

2. Multiple Perspectives Analysis for Document-Level Relation Extraction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Entity and Evidence Guided Attention for Document-Level Relation Extraction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. COREX: Document-level Relation Extraction Framework with Consistent Two-Hop Reasoning and Evidence Sentence Prediction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

5. Document-level Relation Extraction with Progressive Self-distillation;ACM Transactions on Information Systems;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3