ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation

Author:

Xiao Dongling1,Zhang Han1,Li Yukun1,Sun Yu1,Tian Hao1,Wu Hua1,Wang Haifeng1

Affiliation:

1. Baidu, Inc

Abstract

Current pre-training works in natural language generation pay little attention to the problem of exposure bias on downstream tasks. To address this issue, we propose an enhanced multi-flow sequence to sequence pre-training and fine-tuning framework named ERNIE-GEN, which bridges the discrepancy between training and inference with an infilling generation mechanism and a noise-aware generation method. To make generation closer to human writing patterns, this framework introduces a span-by-span generation flow that trains the model to predict semantically-complete spans consecutively rather than predicting word by word. Unlike existing pre-training methods, ERNIE-GEN incorporates multi-granularity target sampling to construct pre-training data, which enhances the correlation between encoder and decoder. Experimental results demonstrate that ERNIE-GEN achieves state-of-the-art results with a much smaller amount of pre-training data and parameters on a range of language generation tasks, including abstractive summarization (Gigaword and CNN/DailyMail), question generation (SQuAD), dialogue generation (Persona-Chat) and generative question answering (CoQA). The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE/ernie-gen.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of LLMs for Educational Question Classification and Generation;Computers and Education: Artificial Intelligence;2024-09

2. Towards Vietnamese Question and Answer Generation: An Empirical Study;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-08-16

3. CIQA: A Coding Inspired Question Answering Model;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

4. CPGA-BOT: A Customized Power Grid Assistant chatBOT Fine-Tuning in Large Language Model;2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS);2024-05-31

5. A fusion topology method for generating new equipment startup schemes for power grids;Frontiers in Energy Research;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3