A Reinforcement Learning-Informed Pattern Mining Framework for Multivariate Time Series Classification

Author:

Gao Ge1,Gao Qitong2,Yang Xi1,Pajic Miroslav2,Chi Min1

Affiliation:

1. North Carolina State University

2. Duke University

Abstract

Multivariate time series (MTS) classification is a challenging and important task in various domains and real-world applications. Much of prior work on MTS can be roughly divided into neural network (NN)- and pattern-based methods. The former can lead to robust classification performance, but many of the generated patterns are challenging to interpret; while the latter often produce interpretable patterns that may not be helpful for the classification task. In this work, we propose a reinforcement learning (RL) informed PAttern Mining framework (RLPAM) to identify interpretable yet important patterns for MTS classification. Our framework has been validated by 30 benchmark datasets as well as real-world large-scale electronic health records (EHRs) for an extremely challenging task: sepsis shock early prediction. We show that RLPAM outperforms the state-of-the-art NN-based methods on 14 out of 30 datasets as well as on the EHRs. Finally, we show how RL informed patterns can be interpretable and can improve our understanding of septic shock progression.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ShapeFormer: Shapelet Transformer for Multivariate Time Series Classification;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Graph-Enabled Reinforcement Learning for Time Series Forecasting With Adaptive Intelligence;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08

3. A Causal Stacking Hidden Markov Model for Time Series Forecasting;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Akane: Perplexity-Guided Time Series Data Cleaning;Proceedings of the ACM on Management of Data;2024-05-29

5. MTG_CD: Multi-scale learnable transformation graph for fault classification and diagnosis in microservices;Journal of Cloud Computing;2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3