State Variable Effects in Graphical Event Models

Author:

Bhattacharjya Debarun1,Subramanian Dharmashankar1,Gao Tian1

Affiliation:

1. IBM Research

Abstract

Many real-world domains involve co-evolving relationships between events, such as meals and exercise, and time-varying random variables, such as a patient's blood glucose levels. In this paper, we propose a general framework for modeling joint temporal dynamics involving continuous time transitions of discrete state variables and irregular arrivals of events over the timeline. We show how conditional Markov processes (as represented by continuous time Bayesian networks) and multivariate point processes (as represented by graphical event models) are among various processes that are covered by the framework. We introduce and compare two simple and interpretable yet practical joint models within the framework with relevant baselines on simulated and real-world datasets, using a graph search algorithm for learning. The experiments highlight the importance of jointly modeling event arrivals and state variable transitions to better fit joint temporal datasets, and the framework opens up possibilities for models involving even more complex dynamics whenever suitable.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clustering and automatic labelling within time series of categorical observations—with an application to marine log messages;Journal of the Royal Statistical Society: Series C (Applied Statistics);2021-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3