Learn from Syntax: Improving Pair-wise Aspect and Opinion Terms Extraction with Rich Syntactic Knowledge

Author:

Wu Shengqiong1,Fei Hao1,Ren Yafeng2,Ji Donghong1,Li Jingye1

Affiliation:

1. Wuhan University

2. Guangdong University of Foreigh Studies

Abstract

In this paper, we propose to enhance the pair-wise aspect and opinion terms extraction (PAOTE) task by incorporating rich syntactic knowledge. We first build a syntax fusion encoder for encoding syntactic features, including a label-aware graph convolutional network (LAGCN) for modeling the dependency edges and labels, as well as the POS tags unifiedly, and a local-attention module encoding POS tags for better term boundary detection. During pairing, we then adopt Biaffine and Triaffine scoring for high-order aspect-opinion term pairing, in the meantime re-harnessing the syntax-enriched representations in LAGCN for syntactic-aware scoring. Experimental results on four benchmark datasets demonstrate that our model outperforms current state-of-the-art baselines, meanwhile yielding explainable predictions with syntactic knowledge.

Publisher

International Joint Conferences on Artificial Intelligence Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3