Affiliation:
1. Wuhan University
2. Guangdong University of Foreigh Studies
Abstract
In this paper, we propose to enhance the pair-wise aspect and opinion terms extraction (PAOTE) task by incorporating rich syntactic knowledge. We first build a syntax fusion encoder for encoding syntactic features, including a label-aware graph convolutional network (LAGCN) for modeling the dependency edges and labels, as well as the POS tags unifiedly, and a local-attention module encoding POS tags for better term boundary detection. During pairing, we then adopt Biaffine and Triaffine scoring for high-order aspect-opinion term pairing, in the meantime re-harnessing the syntax-enriched representations in LAGCN for syntactic-aware scoring. Experimental results on four benchmark datasets demonstrate that our model outperforms current state-of-the-art baselines, meanwhile yielding explainable predictions with syntactic knowledge.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献