Self-Supervised Adversarial Distribution Regularization for Medication Recommendation

Author:

Wang Yanda1,Chen Weitong2,PI Dechang1,Yue Lin23,Wang Sen2,Xu Miao2

Affiliation:

1. Nanjing University of Aeronautics and Astronautics

2. The University of Queensland

3. Northeast Normal University

Abstract

Medication recommendation is a significant healthcare application due to its promise in effectively prescribing medications. Avoiding fatal side effects related to Drug-Drug Interaction (DDI) is among the critical challenges. Most existing methods try to mitigate the problem by providing models with extra DDI knowledge, making models complicated. While treating all patients with different DDI properties as a single cohort would put forward strict requirements on models' generalization performance. In pursuit of a valuable model for a safe recommendation, we propose the Self-Supervised Adversarial Regularization Model for Medication Recommendation (SARMR). SARMR obtains the target distribution associated with safe medication combinations from raw patient records for adversarial regularization. In this way, the model can shape distributions of patient representations to achieve DDI reduction. To obtain accurate self-supervision information, SARMR models interactions between physicians and patients by building a key-value memory neural network and carrying out multi-hop reading to obtain contextual information for patient representations. SARMR outperforms all baseline methods in the experiment on a real-world clinical dataset. This model can achieve DDI reduction when considering the different number of DDI types, which demonstrates the robustness of adversarial regularization for safe medication recommendation.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3